

DATE: 1 April 2014

I.T.L. (PRODUCT TESTING) LTD.

Test Report Accoding to EN 301 511 V9.0.2: 2003

for

Pointer Telocation Ltd.

Equipment under test:

Cellocator Cello

CELLO-CANIQ P/N CT7800130-000 CELLO-IQ P/N CT7800122-000*

Written by:	Point Pinchuck
	R. Pinchuck, Documentation
Approved by: _	Arr
	A. Sharabi, Test Engineer
Approved by: _	1015
	I. Raz, EMC Laboratory Manager

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd. This report relates only to items tested.

*See customer's declaration on page 4.

TABLE OF CONTENTS

1.	GENERAL	INFORMATION	3
	1.1	Administrative Information	3
	1.2	Abbreviations and Symbols	
	1.3	List of Accreditations	.10
2.	APPLICAE	BLE DOCUMENTS	-11
3.	TEST SITE	E DESCRIPTION	-12
	3.1	Location	.12
	3.2	Shielded Room	
	3.3	Open Test Site	
	3.4	Antenna Mast	
	3.5	Turntable	
	3.6	EMI Receiver	
	3.7	Test Equipment	
4.	SUMMARY	(OF TEST RESULTS	-13
5.	EQUIPME	NT UNDER TEST (E.U.T.) DESCRIPTION	-14
6.	LIST OF T	EST EQUIPMENT	-15
	6.1	Emission Tests	.15
7.	MODE OF	OPERATION	-16
8.	RADIATE	DEMISSIONS	-17
	8.1	Test Specification	.17
	8.2	Test Procedure	.17
	8.3	Test Results	.17
9.	SET UP PI	HOTOGRAPH	-19
10.	SIGNATU	RES OF THE E.U.T'S TEST ENGINEERS	-20
11.	APPENDI)	(A - CORRECTION FACTORS	-21
	11.1	Correction factors for CABLE	.21
	11.2	Correction factors for CABLE	
	11.3	Correction factors for CABLE	
	11.4	Correction factors for LOG PERIODIC ANTENNA	
	11.5	Correction factors for BICONICAL ANTENNA	
	17.8	Correction factors for Double-Ridged Waveguide Horn	
	11.9	Correction factors for BICONICAL ANTENNA	.27

1. General Information

1.1 Administrative Information

Manufacturer:	Pointer Telocation Ltd.
Manufacturer's Address:	14 Hamelacha St., Rosh Ha'ayin,48091 Israel Tel: +972-3-572-3111 Fax: +972-3-572-3100
Manufacturer's Representative:	Itamar Gohary
Equipment Under Test (E.U.T):	Cellocator Cello
Equipment Model No.:	CELLO-CANIQ P/N CT7800130-000 , CELLO-IQ P/N CT7800122-000*
Equipment Serial No.:	Not designated
Date of Receipt of E.U.T:	30.03.14
Start of Test:	31.03.14
End of Test:	31.03.14
Test Laboratory Location:	I.T.L (Product Testing) Ltd. Kfar Bin Nun, ISRAEL 9978000
Test Specifications:	See Section 2

See customer's declaration on following page.

May 04, 2014

To whom it may concern,

Differences between Pointer Telocation Cellocator units

Introduction

Cellocator– is a family of a full featured GSM\UMTS\GNSS end units for fleet management, anti-theft and Driver Behavior applications. The family comprises from Cello and CR-300 variants.

The Firmware

The firmware of Cellocator family devices has several variants: **Cello-CANiQ**, **Cello CANiQ(3G),Cello-IQ,CR300**\B all based on the same codebase with differences according to different applications the device intended for. The CR300\B are targeting mainly the fleet management applications and anti-theft application and containing same features as E-mark certified CR200\B with additional support for driver authentication. The Cello IQ has additional features for Driver Behavior application and Cello CANiQ has additional support of CAN BUS triggering application.

The below table contain all feature differences between Cellocator variants.

List of main features:

	CR-300	CR-300B	Cello-IQ	Cello CANiQ
Online tracking	Time, Distance, Roaming and speed dependency	Time, Distance, Roaming and speed dependency	Time, Distance, Roaming and speed dependency	Time, Distance, Roaming and speed dependency
Driver authentication	V	V	N	V
Driver dependent immobilizatio n	N	N	N	N
MDT Support	X	X	V	N
Sensors types	Discrete	Discrete	Discrete, Analog Frequency	Discrete, Analog Frequency

el +972-3-5723111, Fax +972-3- 57231 visit our web site www.pointer.com

Output response type	Permanent, Pulse, PWM, time limited, nested	Permanent, Pulse, PWM, time limited, nested	Permanent, Pulse, PWM, time limited, nested	Permanent, Pulse, PWM, time limited, nested
Jamming detection	V	V	V	V
Geo-Fence support	100 zones	100 zones	100 zones	100 zones
Battery support	Х	N	N	V
Roaming management	50 operators	50 operators	50 operators	50 operators
Hands Free Support	Х	Х	V	V
Built Car Alarm logic	Х	Х	Х	Х
CAN BUS triggering	Х	Х	Х	N
Accelerometer based Ignition sense			V	N
Crash Notification			N	V
EDR	Х	X	V	V
Maneuvers	Х	X	V	V
E-Call	X	X	V	V

14 HaMelacha Street, Afek Industrial Park, Rosh-Ha'ayn, 48091, Israel. Tel +972-3-5723111, Fax +972-3- 5723100 visit our web site www.pointer.com

The Hardware

The Cellocator family hardware variants are identical from functional point of view.

CR300 as successor of CR200:

CR200\B (P\N CT7701000-000\CT7701100-000) are E-mark certified variants approval number: E13-10R -03 12558.

Due to obsolescence of its GPS chipset engine (SirfIII) Pointer moved to new GPS platform (SirfIV) and produced new successor's variants named by new name CR300B.

The only differences between the E-mark Certified CR200\B and its Successor CR300\B are:

- 1. GPS chipset change from SirfIII to Sirf IV including layout change in the GPS section
- Change its cellular Telit modem from GE864 v2 Automotive to GE864 V2- both modems are pin to pin compatible. The changes supported by the Notified Body opinion considered to be similar without testing necessity.
- 3. CR300\B utilized the same PCB and all of the CR200\B PCBA bill of material with the follow additional and should be considered as parent module:
 - Dallas one wire connection.(CR300E use output instead)
 - Additional discrete input.

All other PCBA components remain the same as the certified CR200\B including:

Protection input circuit, DC\DC, Mirco-Processor, Antenna, Inputs and Outputs circuits, charger, battery, enclosure, connectors etc.

<u>Cello CANiQ</u> – this product is the similar as approved Cello F\R\IQ members but have additional support of CAN bus connectivity, new GNSS system and uSD connectivity. This product come in 3 modems Variants all based on Telit 910 approved Platform:

- Telit UE910-EUR- this is a 3G cellular modem support European bands only:900/1800/2100 assembled on Cellocator Cello-CANiQ (3G) CT7800150-000
- Telit UE910-NAR- this is a 3G cellular modem support US bands only:850/1900 assembled on Cellocator Cello-CANiQ (3G) CT7800140-000
- Telit GE910-v3- this is a 2G cellular modem support all bands:850/900/1800/1900- Assembled on Cellocator Cello-CANiQ CT7800130-000 and Cellocator Cello-IQ CT7800122-000

All modems are pin to pin compatible and placed on same PCB.

<u>Cello IQ-</u>This product use same PCB as Cello CANiQ (GE910v3) with less components assembly (No CAN bus connectivity and no uSD connectivity). Cello CANiQ should be considered as "Parent" product of Cello IQ.

14 HaMelacha Street, Afek Industrial Park, Rosh-Ha'ayn, 48091, Israel Tel +972-3-5723111, Fax +972-3- 5723100 visit our web site www.pointer.com

The Part numbers

Pointer P/N	Product	Modem	Battery	Connector	Description
CT7800130-000	Cello- CANiQ	Telit GE910v3	Li-lon 1000mAh	20 pin	Fully featured GPRS/GNSS End unit for fleet management ,Driver Behavior&CAN BUS triggering
CT7800140-000	Cello- CANiQ (3G)	Telit UE910- NAR	Li-lon 1000mAh	20 pin	Fully featured UMTS/GNSS End unit for fleet management ,Driver Behavior&CAN BUS triggering
CT7800150-000	Cello- CANiQ (3G)	Telit UE910- EUR	Li-Ion 1000mAh	20 pin	Fully featured UMTS/GNSS End unit for fleet management ,Driver Behavior&CAN BUS triggering
CT7800122-000	Cello-IQ	Telit GE910v3- 2G	Li-Ion 1000mAh	20 pin	Fully featured GPRS/GPS End unit for fleet management &Driver Behavior
CT7801010-000	CR300	Telit GE864 V2	x	10 pin	Budget GPRS/GPS End unit for fleet management and anti-theft
CT7801110-000	CR300B	Telit GE864 V2	Li-Ion 440mAh	10 pin	Budget GPRS/GPS End unit for fleet management and anti-theft
CT7801011-000	CR300	Telit GE864 V2	×	10 pin	Budget GPRS/GPS End unit for fleet management and anti-theft-Black Enclosure
CT7801111-000	CR300B	Telit GE864 V2	Li-Ion 440mAh	10 pin	Budget GPRS/GPS End unit for fleet management and anti-theft-Black Enclosure
CT7801100-000	CR300E	Telit GE864 V2	x	10 pin	Budget GPRS/GPS End unit for fleet management and anti-theft

The Pin-out

CR300 Variants-

CR300\B preserve same connector as certified CR200\B with additional supports of pin 5 & 10

10 pin Connector Pin-out				
Pin # CR300\B CR300E				
1	Power Input-Car power			
2	OC Output -LED			
3	OC Output -Lights			
4	Input-Ignition			
5	Input-Door	1111		
6	Power Input-GND	ни		
7	TTL Output-Serial-TX			
3	TTL Input-Serial-RX	нн		
Э	Input-Shock sensor	11.11		
10	One wire connection-Dallas one wire	GP output		

....

ISRAEL TESTING LABORATORIES Global Certifications You Can Trust

CELLO Variants-

20 pin Connector Pin-out				
Pin #	Cello IQ	Cello CANiQ		
1	Output-Debug			
2	Power Input-Car power			
3	Power Input-PGND			
1	Input-Ignition			
5	Input-GPIO1	CAN-Low		
5	OC Output -LED			
7	OC Output -Ext-STD-IMB			
3	OC Output -Siren	D8-RX		
)	Output -Audio-Out			
LO	Input-Audio-In			
1	Input-GPIO2	CAN-High		
12	Output-Serial-TX			
13	Input-Serial-RX			
L4	Input-Doors			
15	Input-Shock sensor			
16	Input-Emergency sensor			
17	OC Output -Ext-spec-IMB			
.8	OC Output -Lights			
.9	Power Input-GND	nn		
20	In-Out: Dallas single-wire	m		

Igor Rogov, Vice President, Research and Development Pointer Telocation Ltd.

14 HaMelacha Street, Afek Industrial Park, Rosh-Ha'ayn, 48091, Israel. Tel +972-3-5723111, Fax +972-3- 5723100 visit our web site www.pointer.com

1.2 Abbreviations and Symbols

The following abbreviations and symbols are applicable to this test report:

ACalternating currentAMamplitude modulationARAAntenna Research AssociatesAuxauxiliaryAvgaverageCDNcoupling-decoupling networkcmcentimeterdBdecibeldBmdecibel referred to one milliwattdbµVdecibel referred to one microvoltdbµVdecibel referred to one microvolt per meterDCdirect currentEFT/Belectrical fast transient/burstEMCelectromagnetic compatibilityESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	A/m	ampere per meter
ARAAntenna Research AssociatesAuxauxiliaryAvgaverageCDNcoupling-decoupling networkcmcentimeterdBdecibeldBmdecibel referred to one milliwattdbµVdecibel referred to one microvolt per meterDCdirect currentEFT/Belectrical fast transient/burstEMCelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradiated emissionsecsecondVvoltV/mvolt per meter	AC	alternating current
AuxauxiliaryAvgaverageCDNcoupling-decoupling networkcmcentimeterdBdecibeldBmdecibel referred to one milliwattdbµVdecibel referred to one microvoltdbµVdecibel referred to one microvolt per meterDCdirect currentEFT/Belectrical fast transient/burstEMCelectromagnetic compatibilityESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradiated emissionsecsecondVvoltV/mvolt per meter	AM	amplitude modulation
AvgaverageCDNcoupling-decoupling networkcmcentimeterdBdecibeldBmdecibel referred to one milliwattdbµVdecibel referred to one microvolt per meterDCdirect currentEFT/Belectrical fast transient/burstEMCelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzkilohertzkVvkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillikenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradiated emissionsecsecondVvoltV/mvolt per meter	ARA	Antenna Research Associates
CDNcoupling-decoupling networkcmcentimeterdBdecibeldBmdecibel referred to one milliwattdbµVdecibel referred to one microvoltdbµV/mdecibel referred to one microvolt per meterDCdirect currentEFT/Belectrical fast transient/burstEMCelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	Aux	auxiliary
cmcentimeterdBdecibeldBmdecibel referred to one milliwattdbμVdecibel referred to one microvoltdbμV/mdecibel referred to one microvolt per meterDCdirect currentEFT/Belectrical fast transient/burstEMCelectromagnetic compatibilityESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	Avg	average
dBdecibeldBmdecibel referred to one milliwattdbμVdecibel referred to one microvoltdbμV/mdecibel referred to one microvolt per meterDCdirect currentEFT/Belectrical fast transient/burstEMCelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	CDN	coupling-decoupling network
dBmdecibel referred to one milliwattdbμVdecibel referred to one microvoltdbμV/mdecibel referred to one microvolt per meterDCdirect currentEFT/Belectrical fast transient/burstEMCelectromagnetic compatibilityESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillikenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	cm	centimeter
dbμVdecibel referred to one microvoltdbμV/mdecibel referred to one microvolt per meterDCdirect currentEFT/Belectrical fast transient/burstEMCelectromagnetic compatibilityESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradiated emissionsecsecondVvoltV/mvolt per meter	dB	decibel
db μ V/mdecibel referred to one microvolt per meterDCdirect currentEFT/Belectrical fast transient/burstEMCelectromagnetic compatibilityESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradiated emissionsecsecondVvoltVvoltVvoltVvoltV/mvolt per meter	dBm	decibel referred to one milliwatt
DCdirect currentEFT/Belectrical fast transient/burstEMCelectromagnetic compatibilityESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	dbµV	decibel referred to one microvolt
DCdirect currentEFT/Belectrical fast transient/burstEMCelectromagnetic compatibilityESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	dbµV/m	decibel referred to one microvolt per meter
EMCelectromagnetic compatibilityESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradiated emissionsecsecondVvoltVvolt per meter	DĊ	-
ESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradiated emissionsecsecondVvoltV/mvolt per meter	EFT/B	electrical fast transient/burst
ESDelectrostatic dischargeE.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradiated emissionsecsecondVvoltVvoltV/mvolt per meter	EMC	electromagnetic compatibility
E.U.T.equipment under testGHzgigahertzHPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradiated emissionsecsecondVvoltVvolt per meter	ESD	
HPHewlitt PackardHzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREsecondVvoltV/mvolt per meter	E.U.T.	equipment under test
HzHertzkHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREsecondvvoltVvoltVvolt per meter	GHz	gigahertz
kHzkilohertzkVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREsecondvvoltVvoltVvolt per meter	HP	Hewlitt Packard
kVkilovoltLEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREsecondvoltvoltVvoltV/mvolt per meter	Hz	Hertz
LEDlight emitting diodeLISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREsecondvoltvoltVvoltV/mvolt per meter	kHz	kilohertz
LISNline impedance stabilization networkmmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREsecondvoltvoltVvolt	kV	kilovolt
mmetermHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREsecondvoltvoltVvoltV/mvolt per meter	LED	light emitting diode
mHnmillihenryMHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	LISN	line impedance stabilization network
MHzmegahertzmsecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	m	meter
msecmillisecondN/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	mHn	millihenry
N/Anot applicableperperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	MHz	megahertz
perperiodQPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	msec	millisecond
QPquasi-peakPCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	N/A	
PCpersonal computerRFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	per	1
RFradio frequencyREradiated emissionsecsecondVvoltV/mvolt per meter	•	
REradiated emissionsecsecondVvoltV/mvolt per meter	PC	1 1
sec second V volt V/m volt per meter		1 0
V volt V/m volt per meter	RE	radiated emission
V/m volt per meter		
1		
VRMS volts root mean square		-
	VRMS	volts root mean square

1.3 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), Registration No. 90715.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. Industry Canada (Canada), File No. IC 4025.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.

2. Applicable Documents

2.1	R&TTE Directive: 1999	DIRECTIVE 1999/5/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 1999 on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity
2.2	EN 301 511 V9.0.2:2003	Global System for Mobile communications (GSM); Harmonized EN for mobile stations in the GSM 900 and GSM 1800 bands covering essential requirements under article 3.2 of the R&TTE directive (1999/5/EC)
2.3	ETSI TS 151 010-1 V7.10.0: 2008	Digital cellular telecommunications system (Phase 2+); Mobile Station (MS) conformance specification; Part 1: Conformance specification (3GPP TS 51.010-1 version 7.10.0 Release 7)

3. Test Site Description

3.1 Location

The Electromagnetic Compatibility Test Facility of I.T.L. (PRODUCT TESTING) LTD. is located at Kfar Bin Nun, Israel 99780

Telephone: + 972-8-9797799, Fax: + 972-8-9797702

3.2 Shielded Room

A Modular Shielded Room, Type S81, manufactured by Rayproof, consisting of a Main Room and a Control Room.

The dimensions of the Main Room are: length: 7.4 m, width: 4.35 m, height: 3.75 m.

The dimensions of the Control Room are: length: 3.12 m, width: 2.5 m, height: 2.5 m.

The shielding performance is:

magnetic field: 60 dB at 10 kHz rising linearly to 100 dB at 100 kHz, electric field: better than 110 dB between 50 MHz and 1 GHz, plane wave: 110 dB between 50 MHz and 1 GHz.

All the power lines entering both shielded rooms are filtered.

3.3 Open Test Site

Consists of 3 meter and 10 meter ranges, using a 7x14 meter solid metal ground plane, a remote controlled turntable and an antenna mast. The turntable and the tested equipment that is placed on it are environment protected. All the power, control and signal lines are routed under the ground plane.

3.4 Antenna Mast

Type AAM-4/A, manufactured by Antenna Research Associates (ARA). The antenna position and polarization are remotely controlled via Fibre Optical Link using ARA Dual Controller Type ACU-2/5, and pressurized air.

The antenna position is adjustable between 1-4 meters.

3.5 Turntable

Type ART-1001/4, manufactured by ARA. The position of the turntable is remotely controlled via a Fibre Optic Link, using ARA Dual Controller Type ACU-2/5. The turntable is mounted in a pit and its surface is flush with the Open Site Ground Plane.

3.6 EMI Receiver

Type HP8542E, including HP85420E R.F. filter manufactured by Hewlett-Packard, being in full compliance with CISPR 16 requirements.

3.7 Test Equipment

See details in Section 6.

4. Summary of Test Results

Test	Results
Spurious Emissions EN 301 511 V9.0.2:2003 Clause 5.2.16 TS 151 010-1 V7.10.0: 2008 Clause 12.2.1	The E.U.T met the performance requirements of the specification. The margin between the spurious emission level and the specification limit is 4.58 dB in the worst case at the frequency of 1819.00 MHz, vertical polarization.

5. Equipment Under Test (E.U.T.) Description

The Cello-CANiQ addresses the mid and high-end segments of fleet management products for various advanced applications concerned with vehicle, driver and logistics management.

The Cello-CANiQ allows connectivity with various vehicle environment interfaces, including standard CANBUS and OBD interfaces, driver Identification, serial communication interfaces with 3rd party devices, discrete, analog and frequency measurement ports, voice channel, DTCO and others. All these interfaces are developed and configured for maximum flexibility in data aggregation, filtering, processing and reporting in a way which enables development of future applicative add-ons.

The Cello-CANiQ provides modular and scalable HW options ("peripherals ready" such as SD card, DTCO D8 connectivity and multiple communication technology support) as well as a highly flexible and configurable infrastructure for easy programming of the requested triggering, reaction and messaging scheme as a function of complex array of inputs received from the vehicle bus.

The Cello-CANiQ lays the infrastructure for the provisioning of field engineering services and professional services aimed at solving customer needs or market problems in short time and minimum resources.

The Cello-CANiQ supports DIRECT connectivity to vehicle data buses supporting J1939 or ISO-15765 via OBDII connector. HW form and fit are not changed and the enclosure and connectors look similar to other Cello family devices. Nevertheless, this product features a few important enhancements and improvements, such as HW compatibility with 3G modems, GPS & Glonass Hybrid positioning engine and other infrastructure changes and enablers, as described in the following sections.

The E.U.T. includes a GSM modem with FCC and IC modular approval.

6. List of Test Equipment

6.1 Emission Tests

The equipment indicated below was used for testing Spurious Radiated Emissions, EN 301 511 V9.0.2:2003, Clause 5.2.16.

Test equipment calibration is in accordance with ITL Q.A. Procedure PM 110 "Calibration Control Procedure", which complies with ISO 9002 and ISO/IEC Guide 17025.

Instrument	Manufacturer	Model	Serial No.
Dipole Antenna Set	CDI	A100	597
Spectrum Analyzer	HP	8592L	3826A01204
Spectrum Analyzer	HP	8591E	3414U01226
Receiver	HP	85420E/85422E	3427A00103/34
Antenna - Biconical	ARA	BCD-235/B	1041
Antenna - Log Periodic	A.HSystems, Inc.	SAS-200/511	253
Antenna - Log Periodic	ARA	LPD-2010/A	1038
Antenna Mast	ARA	AAM-4A	
Turntable	ARA	ART-1001/4	
Mast & Table Controller	ARA	ACU-2/5	1001
Double Ridge Guide	EMCO	3115	9702-5111

7. Mode of Operation

The E.U.T. was operated, transmitting to, and receiving information from the operator, through the module. The operator sent and received the information via the auxiliary laptop.

Figure 1. Test Set-up

8. Radiated Emissions

8.1 Test Specification

EN 301 511 V9.0.2: 2003, Clause 5.2.16 TS 151 010-1 V7.10.0: 2008, Clause 12.2.

8.2 Test Procedure

The test was performed in the frequency bands GSM 700 and DCS 1800

The E.U.T. was operated as described in Section 7.

A preliminary measurement to identify spurious emissions except for the fundamental and harmonics was performed inside the shielded room. The E.U.T. was tested transmitting and receiving through a passive repeater in two bands GSM700 and DCS1800. None of the spurious emissions detected were generated by the non-radio part of the unit. The E.U.T. was then transferred to the OATS.

Scanning the frequency range of 30 MHz to 4 GHz was performed. The spurious signals were recorded.

The EMI receiver was operated with 120 kHz resolution bandwidth and 300kHz video bandwidth.

The E.U.T. was replaced by the substitution antenna and a signal generator.

The signal generator was adjusted to the same level at the substitution antenna as the level measured with the E.U.T. This level was recorded.

The above tests were performed in both horizontal and vertical polarizations.

The maximum signal generator levels were recorded as the test results.

8.3 Test Results

The E.U.T met the requirements of EN 301 511 V9.0.2: 2003, Clause 5.2.16.

The margin between the spurious emission level and the specification limit is 6.52 dB in the worst case at the frequency of 3721 MHz, horizontal polarization.

Radiated Emissions

E.U.T Description	Cellocator Cello
Туре	CELLO-CANiQ P/N CT7800130-000
Serial Number:	Not designated

Specification: EN 301 511 V.9.0.2: 2003, Clause 5.216

Frequency	E	Antenn a Pol.	Power Output Generator	Cable Loss	Antenna Gain	EIRP	Spec.	Margin
(MHz)	$(dB\mu V/m)$	(H/V)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)	(dB)
3721.00	42.2	V	-60.22	4.3	8.66	-53.71	-47.0	-6.71
3721.00	41.6	Н	-60.03	4.3	8.66	-53.52	-47.0	-6.52

Figure 2. Spurious Emissions Horizontal/Vertical Polarity

Note:

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.

9. Set Up Photograph

Figure 3 Spurious Emission Test

10. Signatures of the E.U.T's Test Engineers

Test	Test Engineer Name	Signature	Date
Spurious Emission	A. Sharabi	Arr	12.05.14

11. APPENDIX A - CORRECTION FACTORS

11.1 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

	CORRECTION FACTOR	FREQUENCY	CORRECTION FACTOR
(MHz)	(dB)	(MHz)	(dB)
10.0		1.000.0	
10.0	0.3	1200.0	7.3
20.0	0.6	1400.0	7.8
30.0	0.8	1600.0	8.4
40.0	0.9	1800.0	9.1
50.0	1.1	2000.0	9.9
60.0	1.2	2300.0	11.2
70.0	1.3	2600.0	12.2
80.0	1.4	2900.0	13.0
90.0	1.6		
100.0	1.7	-	
150.0	2.0		
200.0	2.3		
250.0	2.7		
300.0	3.1		
350.0	3.4		
400.0	3.7		
450.0	4.0		
500.0	4.3		
600.0	4.7		
700.0	5.3		
800.0	5.9		
900.0	6.3		
1000.0	6.7		

NOTES:

- 1. The cable type is RG-214.
- 2. The overall length of the cable is 27 meters.
- 3. The above data is located in file 27MO3MO.CBL on the disk marked "Radiated Emission Tests EMI Receiver".

11.2 Correction factors for

CABLE

from EMI receiver to test antenna at 3 meter range.

1

FREQUENCY	CORRECTION
	FACTOR
(GHz)	(dB)
1.0	1.2
2.0	1.6
3.0	2.0
4.0	2.4
5.0	3.0
6.0	3.4
7.0	3.8
8.0	4.2
9.0	4.6
10.0	5.0
12.0	5.8

NOTES:

1. The cable type is RG-8.

2. The overall length of the cable is 10 meters.

11.3 Correction factors for

CABLE

from EMI receiver to test antenna

FREQUENCY	CORRECTION FACTOR	FREQUENCY	CORRECTION FACTOR
(MHz)	(dB)	(MHz)	(dB)
10.0	0.2	1200.0	1.6
20.0	0.2	1400.0	1.8
30.0	0.2	1600.0	2.1
40.0	0.2	1800.0	2.2
50.0	0.3	2000.0	2.3
60.0	0.4	2300.0	2.8
70.0	0.4	2600.0	2.7
80.0	0.4	2900.0	3.1
90.0	0.5		
100.0	0.5		
150.0	0.6		
200.0	0.6		
250.0	0.7		
300.0	0.8		
350.0	0.9		
400.0	1.0		
450.0	1.1		
500.0	1.2		
600.0	1.3		
700.0	1.4		
800.0	1.4		
900.0	1.5		
1000.0	1.5		

NOTES:

1. The cable type is RG-214.

2. The overall length of the cable is 5.5 meters.

11.4 Correction factors for

LOG PERIODIC ANTENNA Type LPD 2010/A at 3 and 10 meter ranges.

Distance of 3 meters			
FREQUENCY	AFE		
(MHz)	(dB/m)		
200.0	9.1		
250.0	10.2		
300.0	12.5		
400.0	15.4		
500.0	16.1		
600.0	19.2		
700.0	19.4		
800.0	19.9		
900.0	21.2		
1000.0	23.5		

FREQUENCY	AFE
(MHz)	(dB/m)
200.0	9.0
250.0	10.1
300.0	11.8
400.0	15.3
500.0	15.6
600.0	18.7
700.0	19.1
800.0	20.2
900.0	21.1
1000.0	23.2

NOTES: 1. Antenna serial number is 1038.

- 2. The above lists are located in file number 38M3O.ANT for a 3 meter range, and file number 38M100.ANT for a 10 meter range.
- 3. The files mentioned above are located on the disk marked "Radiated Emission Test EMI Receiver".

Distance of 10 meters

11.5 Correction factors for

BICONICAL ANTENNA Type BCD-235/B, at 3 meter range

FREQUENCY	AFE
(MHz)	(dB/m)
20.0	19.4
30.0	14.8
40.0	11.9
50.0	10.2
60.0	9.1
70.0	8.5
80.0	8.9
90.0	9.6
100.0	10.3
110.0	11.0
120.0	11.5
130.0	11.7
140.0	12.1
150.0	12.6
160.0	12.8
170.0	13.0
180.0	13.5
190.0	14.0
200.0	14.8
210.0	15.3
220.0	15.8
230.0	16.2
240.0	16.6
250.0	17.6
260.0	18.2
270.0	18.4
280.0	18.7
290.0	19.2
300.0	19.9
310	20.7
320	21.9
330	23.4
340	25.1
350	27.0

NOTES:

1. Antenna serial number is 1041.

2. The above list is located in file 19BC10M1.ANT on the disk marked "Radiated Emissions Tests EMI Receiver".

17.8	Correction	factors	for
------	------------	---------	-----

٦

Double-Ridged Waveguide Horn Model: 3115 at 1 meter range.

EDEOUENOV	
FREQUENCY	AN I ENNA FACTOR
(GHz)	(dB 1/m)
1.0	25.0
2.0	28.0
3.0	29.0
4.0	33.0
5.0	34.0
6.0	34.9
7.0	36.0
8.0	37.0
9.0	37.0
10.0	39.5
10.0	39.0
12.0	39.0 39.5
12.0	40.0
14.0	42.0
15.0	39.8
16.0	38.5
17.0	41.0
18.0	46.5

FREQUENCY	ANTENNA Gain
(GHz)	(dB)
1.0	5.5
2.0	8.5
3.0	9.0
4.0	9.5
5.0	10.0
6.0	11.0
7.0	10.5
8.0	11.0
9.0	11.5
10.0	12.0
11.0	12.5
12.0	13.0
13.0	12.5
14.0	12.0
15.0	14.0
16.0	15.9
17.0	14.0
18.0	8.5

11.9 Correction factors for BICONICAL ANTENNA Type 3109, 1.0 meter range

FREQUENCY (MHz)	AFE (dB/m)
	× ,
20.0	11.1
30.0	12.0
40.0	12.0
50.0	11.4
60.0	10.3
70.0	10.7
80.0	8.3
90.0	9.0
100.0	10.0
110.0	11.6
120.0	13.6
130.0	14.2
140.0	13.5
150.0	12.7
160.0	12.7
170.0	13.6
180.0	15.3
190.0	14.6
200.0	14.7
210.0	15.3
220.0	15.8
230.0	17.0
240.0	18.0
250.0	18.1
260.0	18.0
270.0	17.5
280.0	18.2
290.0	19.7
300.0	21.8

NOTES:

1. Antenna serial number is 3244.

2. The above list is located in file 44BIC10M1.ANT on the disk marked "Radiated Emissions Tests EMI Receiver"